JKQTPlotter trunk/v5.0.0
an extensive Qt5+Qt6 Plotter framework (including a feature-richt plotter widget, a speed-optimized, but limited variant and a LaTeX equation renderer!), written fully in C/C++ and without external dependencies
Loading...
Searching...
No Matches
Collaboration diagram for Statistics To Plot Adaptors:

Functions

template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddBoxplots (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped boxplot data"))
 create horizontal boxplots of type TGraph, from the 5-value-summary of groups in the input data
 
template<class InputIt >
JKQTPBoxplotHorizontalElementjkqtpstatAddHBoxplot (JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposY, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0, JKQTPStat5NumberStatistics *statOutput=nullptr)
 add a JKQTPBoxplotHorizontalElement to the given plotter, where the boxplot values are calculated from the data range first ... last
 
template<class InputIt >
std::pair< JKQTPBoxplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHBoxplotAndOutliers (JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposY, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &outliercolumnBaseName=QString("boxplot"), JKQTPStat5NumberStatistics *statOutput=nullptr)
 add a JKQTPBoxplotHorizontalElement and a JKQTPSingleColumnSymbolsGraph for outliers to the given plotter, where the boxplot values are calculated from the data range first ... last
 
template<class InputCatIt , class InputValueIt >
std::pair< JKQTPBoxplotHorizontalGraph *, JKQTPXYLineGraph * > jkqtpstatAddHBoxplotsAndOutliers (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_X, InputValueIt inLastValue_X, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0.03, double maximumQuantile=0.97, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped boxplot data"))
 create vertical boxplots of type JKQTPBoxplotHorizontalGraph, from the 5-value-summary of groups in the input data, also adds a graph showing the outliers
 
template<class InputIt , class BinsInputIt >
JKQTPBarVerticalGraphjkqtpstatAddHHistogram1D (JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
 calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPBarVerticalGraphjkqtpstatAddHHistogram1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, double binWidth, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
 calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPBarVerticalGraphjkqtpstatAddHHistogram1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, int bins=11, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
 calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their number
 
template<class InputItX , class InputItY >
JKQTPColumnContourPlotjkqtpstatAddHistogram2DContour (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double xbinwidth, double ybinwidth, bool normalized=true, const QString &histogramcolumnBaseName=QString("histogram"), double *oxmin=nullptr, double *oxmax=nullptr, double *oymin=nullptr, double *oymax=nullptr)
 calculate calculate a 2-dimensional histogram and add a JKQTPColumnContourPlot to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY
 
template<class InputItX , class InputItY >
JKQTPColumnContourPlotjkqtpstatAddHistogram2DContour (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t xbins=10, size_t ybins=10, bool normalized=true, const QString &histogramcolumnBaseName=QString("histogram"), double *oxmin=nullptr, double *oxmax=nullptr, double *oymin=nullptr, double *oymax=nullptr)
 calculate calculate a 2-dimensional histogram and add a JKQTPColumnContourPlot to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY
 
template<class InputItX , class InputItY >
JKQTPColumnMathImagejkqtpstatAddHistogram2DImage (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double xbinwidth, double ybinwidth, bool normalized=true, const QString &histogramcolumnBaseName=QString("histogram"), double *oxmin=nullptr, double *oxmax=nullptr, double *oymin=nullptr, double *oymax=nullptr)
 calculate calculate a 2-dimensional histogram and add a JKQTPColumnMathImage to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY
 
template<class InputItX , class InputItY >
JKQTPColumnMathImagejkqtpstatAddHistogram2DImage (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t xbins=10, size_t ybins=10, bool normalized=true, const QString &histogramcolumnBaseName=QString("histogram"), double *oxmin=nullptr, double *oxmax=nullptr, double *oymin=nullptr, double *oymax=nullptr)
 calculate calculate a 2-dimensional histogram and add a JKQTPColumnMathImage to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY
 
template<class InputIt , class BinsInputIt >
JKQTPXYLineGraphjkqtpstatAddHKDE1D (JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPXYLineGraphjkqtpstatAddHKDE1D (JKQTBasePlotter *plotter, InputIt first, InputIt last, double binXLeft, double binXDelta, double binXRight, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, evaluation positions are given by the range binXLeft ... binXRight (in steps of binxDelta )
 
template<class InputIt >
JKQTPXYLineGraphjkqtpstatAddHKDE1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, double binWidth, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPXYLineGraphjkqtpstatAddHKDE1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, int Nout=100, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their number
 
template<class InputIt >
JKQTPViolinplotHorizontalElementjkqtpstatAddHViolinplotHistogram (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
 add a JKQTPViolinplotHorizontalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate
 
template<class InputIt >
std::pair< JKQTPViolinplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHViolinplotHistogramAndOutliers (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
 add a JKQTPViolinplotHorizontalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate
 
template<class InputIt >
JKQTPViolinplotHorizontalElementjkqtpstatAddHViolinplotKDE (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
 add a JKQTPViolinplotHorizontalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate
 
template<class InputIt >
std::pair< JKQTPViolinplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHViolinplotKDEAndOutliers (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
 add a JKQTPViolinplotHorizontalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate
 
template<class InputItX , class InputItY >
JKQTPColumnContourPlotjkqtpstatAddKDE2DContour (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t xbins=10, size_t ybins=10, const std::function< double(double, double)> &kernel=std::function< double(double, double)>(&jkqtpstatKernel2DGaussian), double bandwidthX=1.0, double bandwidthY=1.0, const QString &kdecolumnBaseName=QString("histogram"), double *oxmin=nullptr, double *oxmax=nullptr, double *oymin=nullptr, double *oymax=nullptr)
 calculate calculate a 2-dimensional kernel density estimate (KDE) and add a JKQTPColumnContourPlot to the given plotter, where the KDE is calculated from the given data range firstX / firstY ... lastY / lastY
 
template<class InputItX , class InputItY >
JKQTPColumnMathImagejkqtpstatAddKDE2DImage (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t xbins=10, size_t ybins=10, const std::function< double(double, double)> &kernel=std::function< double(double, double)>(&jkqtpstatKernel2DGaussian), double bandwidthX=1.0, double bandwidthY=1.0, const QString &kdecolumnBaseName=QString("histogram"), double *oxmin=nullptr, double *oxmax=nullptr, double *oymin=nullptr, double *oymax=nullptr)
 calculate calculate a 2-dimensional kernel density estimate (KDE) and add a JKQTPColumnMathImage to the given plotter, where the KDE is calculated from the given data range firstX / firstY ... lastY / lastY
 
template<class InputItX , class InputItY >
JKQTPXFunctionLineGraphjkqtpstatAddLinearRegression (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false)
 calculate the linear regression coefficients for a given data range firstX / firstY ... lastX / lastY where the model is $ f(x)=a+b\cdot x $
 
JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraphjkqtpstatAddLinearRegression (JKQTPXYGraph *datagraph, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false)
 calculate the linear regression coefficients for a given data data used to draw any JKQTPXYGraph datagraph where the model is $ f(x)=a+b\cdot x $
 
template<class InputItX , class InputItY , class InputItW >
JKQTPXFunctionLineGraphjkqtpstatAddLinearWeightedRegression (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, std::function< double(double)> fWeightDataToWi=&jkqtp_identity< double >)
 calculate the weighted linear regression coefficients for a given for a given data range firstX / firstY / firstW ... lastX / lastY / lastW where the model is $ f(x)=a+b\cdot x $
 
JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraphjkqtpstatAddLinearWeightedRegression (JKQTPXYGraph *datagraph, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false)
 calculate the linear weighted regression coefficients for a given data data used to draw any JKQTPXYGraph datagraph , which also implements JKQTPYGraphErrorData and where the model is $ f(x)=a+b\cdot x $
 
template<class InputItX , class InputItY >
JKQTPXFunctionLineGraphjkqtpstatAddPolyFit (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t P)
 fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given data range firstX / firstY ... lastX / lastY
 
template<class InputItX , class InputItY , class OutputItP >
JKQTPXFunctionLineGraphjkqtpstatAddPolyFit (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t P, OutputItP firstRes)
 fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given data range firstX / firstY ... lastX / lastY
 
JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraphjkqtpstatAddPolyFit (JKQTPXYGraph *datagraph, size_t P)
 fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given JKQTPXYGraph datagraph
 
template<class OutputItP >
JKQTPXFunctionLineGraphjkqtpstatAddPolyFit (JKQTPXYGraph *datagraph, size_t P, OutputItP firstRes)
 fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given JKQTPXYGraph datagraph
 
template<class InputItX , class InputItY >
JKQTPXFunctionLineGraphjkqtpstatAddRegression (JKQTBasePlotter *plotter, JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false)
 calculate the linear regression coefficients for a given data range firstX / firstY ... lastX / lastY where the model is defined by type
 
template<class InputItX , class InputItY >
JKQTPXFunctionLineGraphjkqtpstatAddRobustIRLSLinearRegression (JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100)
 calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters of the model $ f(x)=a+b\cdot x $ for a given data range firstX / firstY ... lastX / lastY
 
JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraphjkqtpstatAddRobustIRLSLinearRegression (JKQTPXYGraph *datagraph, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100)
 calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters of the model $ f(x)=a+b\cdot x $ for a given data range firstX / firstY ... lastX / lastY
 
template<class InputItX , class InputItY >
JKQTPXFunctionLineGraphjkqtpstatAddRobustIRLSRegression (JKQTBasePlotter *plotter, JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100)
 calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters where the model is defined by type for a given data range firstX / firstY ... lastX / lastY
 
JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraphjkqtpstatAddRobustIRLSRegression (JKQTPXYGraph *datagraph, JKQTPStatRegressionModelType type, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100)
 calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters where the model is defined by type for a given data range firstX / firstY ... lastX / lastY
 
template<class InputIt >
JKQTPBoxplotVerticalElementjkqtpstatAddVBoxplot (JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposX, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0, JKQTPStat5NumberStatistics *statOutput=nullptr)
 add a JKQTPBoxplotVerticalElement to the given plotter, where the boxplot values are calculated from the data range first ... last
 
template<class InputIt >
std::pair< JKQTPBoxplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVBoxplotAndOutliers (JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposX, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &outliercolumnBaseName=QString("boxplot"), JKQTPStat5NumberStatistics *statOutput=nullptr)
 add a JKQTPBoxplotVerticalElement and a JKQTPSingleColumnSymbolsGraph for outliers to the given plotter, where the boxplot values are calculated from the data range first ... last
 
template<class InputCatIt , class InputValueIt >
std::pair< JKQTPBoxplotVerticalGraph *, JKQTPXYLineGraph * > jkqtpstatAddVBoxplotsAndOutliers (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0.03, double maximumQuantile=0.97, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped boxplot data"))
 create vertical boxplots of type JKQTPBoxplotVerticalGraph, from the 5-value-summary of groups in the input data, also adds a graph showing the outliers
 
template<class InputIt , class BinsInputIt >
JKQTPBarHorizontalGraphjkqtpstatAddVHistogram1D (JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
 calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPBarHorizontalGraphjkqtpstatAddVHistogram1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, double binWidth, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
 calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPBarHorizontalGraphjkqtpstatAddVHistogram1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, int bins=11, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
 calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their number
 
template<class InputIt , class BinsInputIt >
JKQTPXYLineGraphjkqtpstatAddVKDE1D (JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPXYLineGraphjkqtpstatAddVKDE1D (JKQTBasePlotter *plotter, InputIt first, InputIt last, double binXLeft, double binXDelta, double binXRight, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, evaluation positions are given by the range binXLeft ... binXRight (in steps of binxDelta )
 
template<class InputIt >
JKQTPXYLineGraphjkqtpstatAddVKDE1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, double binWidth, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width
 
template<class InputIt >
JKQTPXYLineGraphjkqtpstatAddVKDE1DAutoranged (JKQTBasePlotter *plotter, InputIt first, InputIt last, int Nout=100, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
 calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their number
 
template<class InputIt >
JKQTPViolinplotVerticalElementjkqtpstatAddVViolinplotHistogram (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
 add a JKQTPViolinplotVerticalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate
 
template<class InputIt >
std::pair< JKQTPViolinplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVViolinplotHistogramAndOutliers (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
 add a JKQTPViolinplotVerticalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate
 
template<class InputIt >
JKQTPViolinplotVerticalElementjkqtpstatAddVViolinplotKDE (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
 add a JKQTPViolinplotVerticalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate
 
template<class InputIt >
std::pair< JKQTPViolinplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVViolinplotKDEAndOutliers (JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
 add a JKQTPViolinplotVerticalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate
 
template<class InputItX , class InputItY , class InputItW >
JKQTPXFunctionLineGraphjkqtpstatAddWeightedRegression (JKQTBasePlotter *plotter, JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, std::function< double(double)> fWeightDataToWi=&jkqtp_identity< double >)
 calculate the weighted linear regression coefficients for a given for a given data range firstX / firstY / firstW ... lastX / lastY / lastW where the model is defined by type
 
JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraphjkqtpstatAddWeightedRegression (JKQTPXYGraph *datagraph, JKQTPStatRegressionModelType type, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false)
 calculate the linear weighted regression coefficients for a given data data used to draw any JKQTPXYGraph datagraph , which also implements JKQTPYGraphErrorData and where the model is defined by type
 
template<class InputCatIt , class InputValueIt >
JKQTPBarHorizontalErrorGraphjkqtpstatAddXErrorBarGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPBarHorizontalErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPFilledCurveXErrorGraphjkqtpstatAddXErrorFilledCurveGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPFilledCurveXErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddXErrorGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a plot with x-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPImpulsesHorizontalErrorGraphjkqtpstatAddXErrorImpulsesGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPImpulsesHorizontalErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPXYLineErrorGraphjkqtpstatAddXErrorLineGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPXYLineErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPXYParametrizedErrorScatterGraphjkqtpstatAddXErrorParametrizedScatterGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPXYParametrizedErrorScatterGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddXYErrorGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a plot with x- and y-direction error bars, calculated from directional average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPXYLineErrorGraphjkqtpstatAddXYErrorLineGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPXYLineErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPXYParametrizedErrorScatterGraphjkqtpstatAddXYErrorParametrizedScatterGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPXYParametrizedErrorScatterGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPBarVerticalErrorGraphjkqtpstatAddYErrorBarGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPBarVerticalErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPFilledCurveYErrorGraphjkqtpstatAddYErrorFilledCurveGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPFilledCurveYErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddYErrorGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a plot with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPImpulsesVerticalErrorGraphjkqtpstatAddYErrorImpulsesGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPImpulsesVerticalErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPXYLineErrorGraphjkqtpstatAddYErrorLineGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPXYLineErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPXYParametrizedErrorScatterGraphjkqtpstatAddYErrorParametrizedScatterGraph (JKQTBasePlotter *plotter, InputCatIt inFirstCat_X, InputCatIt inLastCat_X, InputValueIt inFirstValue_Y, InputValueIt inLastValue_Y, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped data"))
 create a JKQTPXYParametrizedErrorScatterGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data
 
template<class InputCatIt , class InputValueIt >
JKQTPBoxplotVerticalGraphjkqtpstatVAddBoxplots (JKQTBasePlotter *plotter, InputCatIt inFirstCat_Y, InputCatIt inLastCat_Y, InputValueIt inFirstValue_X, InputValueIt inLastValue_X, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0, JKQTPStatGroupDefinitionFunctor1D groupDefFunc=&jkqtpstatGroupingIdentity1D, const QString &columnBaseName=QString("grouped boxplot data"))
 create vertical boxplots of type JKQTPBoxplotVerticalGraph, from the 5-value-summary of groups in the input data
 

Detailed Description

Function Documentation

◆ jkqtpstatAddBoxplots()

template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddBoxplots ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0,
double  maximumQuantile = 1.0,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped boxplot data") 
)
inline

create horizontal boxplots of type TGraph, from the 5-value-summary of groups in the input data

Template Parameters
TGraphtype of graph that should be added to the plot, has to offer the same interface as JKQTPBoxplotVerticalGraph or JKQTPBoxplotHorizontalGraph
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the boxplot graph
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddHBoxplot()

template<class InputIt >
JKQTPBoxplotHorizontalElement * jkqtpstatAddHBoxplot ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  boxposY,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0,
double  maximumQuantile = 1.0,
JKQTPStat5NumberStatistics statOutput = nullptr 
)
inline

add a JKQTPBoxplotHorizontalElement to the given plotter, where the boxplot values are calculated from the data range first ... last

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
boxposYy-coordinate of the boxplot
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
[out]statOutputoptionally returns the internally calculated statistics as a JKQTPStat5NumberStatistics
Returns
a boxplot element with its values initialized from the given data range

Example:

jkqtpstatAddHBoxplot(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3);
JKQTPBoxplotHorizontalElement * jkqtpstatAddHBoxplot(JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposY, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0, JKQTPStat5NumberStatistics *statOutput=nullptr)
add a JKQTPBoxplotHorizontalElement to the given plotter, where the boxplot values are calculated fro...
Definition jkqtpstatisticsadaptors.h:67
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstat5NumberStatistics()

◆ jkqtpstatAddHBoxplotAndOutliers()

template<class InputIt >
std::pair< JKQTPBoxplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHBoxplotAndOutliers ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  boxposY,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
const QString &  outliercolumnBaseName = QString("boxplot"),
JKQTPStat5NumberStatistics statOutput = nullptr 
)
inline

add a JKQTPBoxplotHorizontalElement and a JKQTPSingleColumnSymbolsGraph for outliers to the given plotter, where the boxplot values are calculated from the data range first ... last

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
boxposYy-coordinate of the outliers (and the boxplot)
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
outliercolumnBaseNamethis string is used in building the column names for the outlier columns
[out]statOutputoptionally returns the internally calculated statistics as a JKQTPStat5NumberStatistics
Returns
a boxplot element with its values initialized from the given data range

Example:

jkqtpstatAddHBoxplotAndOutliers(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3);
jkqtpstatAddHBoxplotAndOutliers(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3,
0.25, 0.75, // 1. and 3. Quartile for the boxplot box
0.05, 0.95 // Quantiles for the boxplot box whiskers' ends
std::pair< JKQTPBoxplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHBoxplotAndOutliers(JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposY, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &outliercolumnBaseName=QString("boxplot"), JKQTPStat5NumberStatistics *statOutput=nullptr)
add a JKQTPBoxplotHorizontalElement and a JKQTPSingleColumnSymbolsGraph for outliers to the given plo...
Definition jkqtpstatisticsadaptors.h:164
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstat5NumberStatistics()

◆ jkqtpstatAddHBoxplotsAndOutliers()

template<class InputCatIt , class InputValueIt >
std::pair< JKQTPBoxplotHorizontalGraph *, JKQTPXYLineGraph * > jkqtpstatAddHBoxplotsAndOutliers ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_X,
InputValueIt  inLastValue_X,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped boxplot data") 
)
inline

create vertical boxplots of type JKQTPBoxplotHorizontalGraph, from the 5-value-summary of groups in the input data, also adds a graph showing the outliers

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_X and inLastValue_X
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Xiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Xiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the boxplot graph (return.first) and the outliers graph (return.second)
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddHHistogram1D()

template<class InputIt , class BinsInputIt >
JKQTPBarVerticalGraph * jkqtpstatAddHHistogram1D ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
BinsInputIt  binsFirst,
BinsInputIt  binsLast,
bool  normalized = true,
bool  cummulative = false,
const QString &  histogramcolumnBaseName = QString("histogram") 
)
inline

calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
BinsInputItstandard iterator type of binsFirst and binsLast.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binsFirstiterator pointing to the first item in the set of histogram bins
binsLastiterator pointing behind the last item in the set of histogram bins
histogramcolumnBaseNamethis string is used in building the column names for the histogram columns
normalizedindicates whether the histogram has to be normalized
cummulativeif true, a cummulative histogram is calculated
Returns
a graph class pointer (of type GraphClass ) displaying the histogram data

Example:

std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
jkqtpstatAddHHistogram1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
JKQTPBarVerticalGraph * jkqtpstatAddHHistogram1D(JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:906
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatHistogram1D(), JKQTPBarVerticalGraph

◆ jkqtpstatAddHHistogram1DAutoranged() [1/2]

template<class InputIt >
JKQTPBarVerticalGraph * jkqtpstatAddHHistogram1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  binWidth,
bool  normalized = true,
bool  cummulative = false,
const QString &  histogramcolumnBaseName = QString("histogram") 
)
inline

calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binWidthwidth of the bins
histogramcolumnBaseNamethis string is used in building the column names for the histogram columns
normalizedindicates whether the histogram has to be normalized
cummulativeif true, a cummulative histogram is calculated
Returns
a graph class pointer (of type GraphClass ) displaying the histogram data

Example:

jkqtpstatAddHHistogram1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 0.5);
JKQTPBarVerticalGraph * jkqtpstatAddHHistogram1DAutoranged(JKQTBasePlotter *plotter, InputIt first, InputIt last, int bins=11, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:828
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatHistogram1DAutoranged(), JKQTPBarVerticalGraph

◆ jkqtpstatAddHHistogram1DAutoranged() [2/2]

template<class InputIt >
JKQTPBarVerticalGraph * jkqtpstatAddHHistogram1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
int  bins = 11,
bool  normalized = true,
bool  cummulative = false,
const QString &  histogramcolumnBaseName = QString("histogram") 
)
inline

calculate an autoranged histogram and add a JKQTPBarVerticalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their number

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binsnumber of bins in the resulting histogram
histogramcolumnBaseNamethis string is used in building the column names for the outlier columns
normalizedindicates whether the histogram has to be normalized
cummulativeif true, a cummulative histogram is calculated
Returns
a graph class pointer (of type GraphClass ) displaying the histogram data

Example:

jkqtpstatAddHHistogram1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 11);
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatHistogram1DAutoranged(), JKQTPBarVerticalGraph

◆ jkqtpstatAddHistogram2DContour() [1/2]

template<class InputItX , class InputItY >
JKQTPColumnContourPlot * jkqtpstatAddHistogram2DContour ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
double  xbinwidth,
double  ybinwidth,
bool  normalized = true,
const QString &  histogramcolumnBaseName = QString("histogram"),
double *  oxmin = nullptr,
double *  oxmax = nullptr,
double *  oymin = nullptr,
double *  oymax = nullptr 
)
inline

calculate calculate a 2-dimensional histogram and add a JKQTPColumnContourPlot to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first x-position item in the dataset to use $ X_1 $
lastXiterator pointing behind the last x-position item in the dataset to use $ X_N $
firstYiterator pointing to the first y-position item in the dataset to use $ Y_1 $
lastYiterator pointing behind the last y-position item in the dataset to use $ Y_N $
xbinwidthwidth of bins in x-direction
ybinwidthwidth of bins in y-direction
normalizedindicates whether the histogram has to be normalized
histogramcolumnBaseNamethis string is used in building the column names for the histogram data columns
[out]oxminposition of the first histogram bin in x-direction
[out]oxmaxposition of the last histogram bin in x-direction
[out]oyminposition of the first histogram bin in y-direction
[out]oymaxposition of the last histogram bin in y-direction
Returns
a graph class pointer (of type JKQTPColumnContourPlot ) displaying the histogram data as a contour plot
See also
jkqtpstatHistogram2D(), Tutorial (JKQTPDatastore): Advanced 2-Dimensional Statistics with JKQTPDatastore

◆ jkqtpstatAddHistogram2DContour() [2/2]

template<class InputItX , class InputItY >
JKQTPColumnContourPlot * jkqtpstatAddHistogram2DContour ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
size_t  xbins = 10,
size_t  ybins = 10,
bool  normalized = true,
const QString &  histogramcolumnBaseName = QString("histogram"),
double *  oxmin = nullptr,
double *  oxmax = nullptr,
double *  oymin = nullptr,
double *  oymax = nullptr 
)
inline

calculate calculate a 2-dimensional histogram and add a JKQTPColumnContourPlot to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first x-position item in the dataset to use $ X_1 $
lastXiterator pointing behind the last x-position item in the dataset to use $ X_N $
firstYiterator pointing to the first y-position item in the dataset to use $ Y_1 $
lastYiterator pointing behind the last y-position item in the dataset to use $ Y_N $
xbinsnumber of bins in x-direction
ybinsnumber of bins in y-direction
normalizedindicates whether the histogram has to be normalized
histogramcolumnBaseNamethis string is used in building the column names for the histogram data columns
[out]oxminposition of the first histogram bin in x-direction
[out]oxmaxposition of the last histogram bin in x-direction
[out]oyminposition of the first histogram bin in y-direction
[out]oymaxposition of the last histogram bin in y-direction
Returns
a graph class pointer (of type JKQTPColumnContourPlot ) displaying the histogram data as a contour plot
See also
jkqtpstatHistogram2D(), Tutorial (JKQTPDatastore): Advanced 2-Dimensional Statistics with JKQTPDatastore

◆ jkqtpstatAddHistogram2DImage() [1/2]

template<class InputItX , class InputItY >
JKQTPColumnMathImage * jkqtpstatAddHistogram2DImage ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
double  xbinwidth,
double  ybinwidth,
bool  normalized = true,
const QString &  histogramcolumnBaseName = QString("histogram"),
double *  oxmin = nullptr,
double *  oxmax = nullptr,
double *  oymin = nullptr,
double *  oymax = nullptr 
)
inline

calculate calculate a 2-dimensional histogram and add a JKQTPColumnMathImage to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first x-position item in the dataset to use $ X_1 $
lastXiterator pointing behind the last x-position item in the dataset to use $ X_N $
firstYiterator pointing to the first y-position item in the dataset to use $ Y_1 $
lastYiterator pointing behind the last y-position item in the dataset to use $ Y_N $
xbinwidthwidth of bins in x-direction
ybinwidthwidth of bins in y-direction
normalizedindicates whether the histogram has to be normalized
histogramcolumnBaseNamethis string is used in building the column names for the histogram data columns
[out]oxminposition of the first histogram bin in x-direction
[out]oxmaxposition of the last histogram bin in x-direction
[out]oyminposition of the first histogram bin in y-direction
[out]oymaxposition of the last histogram bin in y-direction
Returns
a graph class pointer (of type JKQTPColumnMathImage ) displaying the histogram data
See also
jkqtpstatHistogram2D(), Tutorial (JKQTPDatastore): Advanced 2-Dimensional Statistics with JKQTPDatastore

◆ jkqtpstatAddHistogram2DImage() [2/2]

template<class InputItX , class InputItY >
JKQTPColumnMathImage * jkqtpstatAddHistogram2DImage ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
size_t  xbins = 10,
size_t  ybins = 10,
bool  normalized = true,
const QString &  histogramcolumnBaseName = QString("histogram"),
double *  oxmin = nullptr,
double *  oxmax = nullptr,
double *  oymin = nullptr,
double *  oymax = nullptr 
)
inline

calculate calculate a 2-dimensional histogram and add a JKQTPColumnMathImage to the given plotter, where the histogram is calculated from the given data range firstX / firstY ... lastY / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first x-position item in the dataset to use $ X_1 $
lastXiterator pointing behind the last x-position item in the dataset to use $ X_N $
firstYiterator pointing to the first y-position item in the dataset to use $ Y_1 $
lastYiterator pointing behind the last y-position item in the dataset to use $ Y_N $
xbinsnumber of bins in x-direction
ybinsnumber of bins in y-direction
normalizedindicates whether the histogram has to be normalized
histogramcolumnBaseNamethis string is used in building the column names for the histogram data columns
[out]oxminposition of the first histogram bin in x-direction
[out]oxmaxposition of the last histogram bin in x-direction
[out]oyminposition of the first histogram bin in y-direction
[out]oymaxposition of the last histogram bin in y-direction
Returns
a graph class pointer (of type JKQTPColumnMathImage ) displaying the histogram data
See also
jkqtpstatHistogram2D(), Tutorial (JKQTPDatastore): Advanced 2-Dimensional Statistics with JKQTPDatastore

◆ jkqtpstatAddHKDE1D() [1/2]

template<class InputIt , class BinsInputIt >
JKQTPXYLineGraph * jkqtpstatAddHKDE1D ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
BinsInputIt  binsFirst,
BinsInputIt  binsLast,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
BinsInputItstandard iterator type of binsFirst and binsLast.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binsFirstiterator pointing to the first item in the set of KDE bins
binsLastiterator pointing behind the last item in the set of KDE bins
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
jkqtpstatAddHKDE1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
JKQTPXYLineGraph * jkqtpstatAddHKDE1D(JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calcula...
Definition jkqtpstatisticsadaptors.h:1365
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1D(), JKQTPXYLineGraph

◆ jkqtpstatAddHKDE1D() [2/2]

template<class InputIt >
JKQTPXYLineGraph * jkqtpstatAddHKDE1D ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  binXLeft,
double  binXDelta,
double  binXRight,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, evaluation positions are given by the range binXLeft ... binXRight (in steps of binxDelta )

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binXLeftfirst x-position, where to evaluate the KDE
binXDeltadistance between two x-positions at which the KDE is evaluated
binXRightlast x-position, where to evaluate the KDE
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
jkqtpstatAddHKDE1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1D(), JKQTPXYLineGraph

◆ jkqtpstatAddHKDE1DAutoranged() [1/2]

template<class InputIt >
JKQTPXYLineGraph * jkqtpstatAddHKDE1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  binWidth,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binWidthwidth of the bins
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

jkqtpstatAddHKDE1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 0.01);
JKQTPXYLineGraph * jkqtpstatAddHKDE1DAutoranged(JKQTBasePlotter *plotter, InputIt first, InputIt last, int Nout=100, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calcula...
Definition jkqtpstatisticsadaptors.h:1279
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1DAutoranged(), JKQTPXYLineGraph

◆ jkqtpstatAddHKDE1DAutoranged() [2/2]

template<class InputIt >
JKQTPXYLineGraph * jkqtpstatAddHKDE1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
int  Nout = 100,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their number

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
Noutnumber of points in the resulting KDE
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

jkqtpstatAddHKDE1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 200);
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1DAutoranged(), JKQTPXYLineGraph

◆ jkqtpstatAddHViolinplotHistogram()

template<class InputIt >
JKQTPViolinplotHorizontalElement * jkqtpstatAddHViolinplotHistogram ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 21 
)
inline

add a JKQTPViolinplotHorizontalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
distBasenamename basing for added columns
violinDistSamplesnumber of bin of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddHViolinplotHistogram(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -10);
JKQTPViolinplotHorizontalElement * jkqtpstatAddHViolinplotHistogram(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
add a JKQTPViolinplotHorizontalElement to the given plotter, where the Violinplot values are calculat...
Definition jkqtpstatisticsadaptors.h:334
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotHorizontalElement, jkqtpstatHistogram1DAutoranged()

◆ jkqtpstatAddHViolinplotHistogramAndOutliers()

template<class InputIt >
std::pair< JKQTPViolinplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHViolinplotHistogramAndOutliers ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 21 
)
inline

add a JKQTPViolinplotHorizontalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
distBasenamename basing for added columns
violinDistSamplesnumber of samples of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddHViolinplotHistogramAndOutliers(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -5);
std::pair< JKQTPViolinplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHViolinplotHistogramAndOutliers(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
add a JKQTPViolinplotHorizontalElement and an outliers graph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:573
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotHorizontalElement, jkqtpstatHistogram1DAutoranged()

◆ jkqtpstatAddHViolinplotKDE()

template<class InputIt >
JKQTPViolinplotHorizontalElement * jkqtpstatAddHViolinplotKDE ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = -1,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 100 
)
inline

add a JKQTPViolinplotHorizontalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE, if <0 then jkqtpstatEstimateKDEBandwidth(first,last) is called
distBasenamename basing for added columns
violinDistSamplesnumber of samples of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddHViolinplotKDE(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -20);
JKQTPViolinplotHorizontalElement * jkqtpstatAddHViolinplotKDE(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
add a JKQTPViolinplotHorizontalElement to the given plotter, where the Violinplot values are calculat...
Definition jkqtpstatisticsadaptors.h:286
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotHorizontalElement, jkqtpstatKDE1DAutoranged()

◆ jkqtpstatAddHViolinplotKDEAndOutliers()

template<class InputIt >
std::pair< JKQTPViolinplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHViolinplotKDEAndOutliers ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = -1,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 100 
)
inline

add a JKQTPViolinplotHorizontalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE, if <0 then jkqtpstatEstimateKDEBandwidth(first,last) is called
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
distBasenamename basing for added columns
violinDistSamplesnumber of samples of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddHViolinplotKDEAndOutliers(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -15);
std::pair< JKQTPViolinplotHorizontalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddHViolinplotKDEAndOutliers(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
add a JKQTPViolinplotHorizontalElement and an outliers graph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:490
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotHorizontalElement, jkqtpstatKDE1DAutoranged()

◆ jkqtpstatAddKDE2DContour()

template<class InputItX , class InputItY >
JKQTPColumnContourPlot * jkqtpstatAddKDE2DContour ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
size_t  xbins = 10,
size_t  ybins = 10,
const std::function< double(double, double)> &  kernel = std::function<double(double,double)>(&jkqtpstatKernel2DGaussian),
double  bandwidthX = 1.0,
double  bandwidthY = 1.0,
const QString &  kdecolumnBaseName = QString("histogram"),
double *  oxmin = nullptr,
double *  oxmax = nullptr,
double *  oymin = nullptr,
double *  oymax = nullptr 
)
inline

calculate calculate a 2-dimensional kernel density estimate (KDE) and add a JKQTPColumnContourPlot to the given plotter, where the KDE is calculated from the given data range firstX / firstY ... lastY / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first x-position item in the dataset to use $ X_1 $
lastXiterator pointing behind the last x-position item in the dataset to use $ X_N $
firstYiterator pointing to the first y-position item in the dataset to use $ Y_1 $
lastYiterator pointing behind the last y-position item in the dataset to use $ Y_N $
xbinsnumber of bins in x-direction (i.e. width of the output KDE)
ybinsnumber of bins in y-direction (i.e. height of the output KDE)
kernelthe kernel function to use (e.g. jkqtpstatKernel2DGaussian() )
bandwidthXx-bandwidth used for the KDE
bandwidthYy-bandwidth used for the KDE
kdecolumnBaseNamethis string is used in building the column names for the KDE data columns
[out]oxminposition of the first KDE bin in x-direction
[out]oxmaxposition of the last KDE bin in x-direction
[out]oyminposition of the first KDE bin in y-direction
[out]oymaxposition of the last KDE bin in y-direction
Returns
a graph class pointer (of type JKQTPColumnContourPlot ) displaying the KDE data as a contour plot
See also
jkqtpstatKDE2D(), Tutorial (JKQTPDatastore): Advanced 2-Dimensional Statistics with JKQTPDatastore

◆ jkqtpstatAddKDE2DImage()

template<class InputItX , class InputItY >
JKQTPColumnMathImage * jkqtpstatAddKDE2DImage ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
size_t  xbins = 10,
size_t  ybins = 10,
const std::function< double(double, double)> &  kernel = std::function<double(double,double)>(&jkqtpstatKernel2DGaussian),
double  bandwidthX = 1.0,
double  bandwidthY = 1.0,
const QString &  kdecolumnBaseName = QString("histogram"),
double *  oxmin = nullptr,
double *  oxmax = nullptr,
double *  oymin = nullptr,
double *  oymax = nullptr 
)
inline

calculate calculate a 2-dimensional kernel density estimate (KDE) and add a JKQTPColumnMathImage to the given plotter, where the KDE is calculated from the given data range firstX / firstY ... lastY / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first x-position item in the dataset to use $ X_1 $
lastXiterator pointing behind the last x-position item in the dataset to use $ X_N $
firstYiterator pointing to the first y-position item in the dataset to use $ Y_1 $
lastYiterator pointing behind the last y-position item in the dataset to use $ Y_N $
xbinsnumber of bins in x-direction (i.e. width of the output KDE)
ybinsnumber of bins in y-direction (i.e. height of the output KDE)
kernelthe kernel function to use (e.g. jkqtpstatKernel2DGaussian() )
bandwidthXx-bandwidth used for the KDE
bandwidthYy-bandwidth used for the KDE
kdecolumnBaseNamethis string is used in building the column names for the KDE data columns
[out]oxminposition of the first KDE bin in x-direction
[out]oxmaxposition of the last KDE bin in x-direction
[out]oyminposition of the first KDE bin in y-direction
[out]oymaxposition of the last KDE bin in y-direction
Returns
a graph class pointer (of type JKQTPColumnMathImage ) displaying the KDE data
See also
jkqtpstatKDE2D(), Tutorial (JKQTPDatastore): Advanced 2-Dimensional Statistics with JKQTPDatastore

◆ jkqtpstatAddLinearRegression() [1/2]

template<class InputItX , class InputItY >
JKQTPXFunctionLineGraph * jkqtpstatAddLinearRegression ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false 
)
inline

calculate the linear regression coefficients for a given data range firstX / firstY ... lastX / lastY where the model is $ f(x)=a+b\cdot x $

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB

Example:

jkqtpstatAddLinearRegression(plot1->getPlotter(), datastore1->begin(colLinX), datastore1->end(colLinX), datastore1->begin(colLinY), datastore1->end(colLinY));
JKQTPXFunctionLineGraph * jkqtpstatAddLinearRegression(JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false)
calculate the linear regression coefficients for a given data range firstX / firstY ....
Definition jkqtpstatisticsadaptors.h:1754
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatLinearRegression()

◆ jkqtpstatAddLinearRegression() [2/2]

JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraph * jkqtpstatAddLinearRegression ( JKQTPXYGraph datagraph,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false 
)

calculate the linear regression coefficients for a given data data used to draw any JKQTPXYGraph datagraph where the model is $ f(x)=a+b\cdot x $

Parameters
datagraphgraph representing the (x,y) datapairs to which to fit the regression line
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB

Example:

plot1->addGraph(graphD=new JKQTPXYLineGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
void setXYColumns(size_t xCol, size_t yCol)
sets xColumn and yColumn at the same time
This implements xy line plots. This also alows to draw symbols at the data points.
Definition jkqtplines.h:61
Note
The line graph is added to the same plotter that is the parent of datagraph !
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatLinearRegression()

◆ jkqtpstatAddLinearWeightedRegression() [1/2]

template<class InputItX , class InputItY , class InputItW >
JKQTPXFunctionLineGraph * jkqtpstatAddLinearWeightedRegression ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
InputItW  firstW,
InputItW  lastW,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false,
std::function< double(double)>  fWeightDataToWi = &jkqtp_identity<double> 
)
inline

calculate the weighted linear regression coefficients for a given for a given data range firstX / firstY / firstW ... lastX / lastY / lastW where the model is $ f(x)=a+b\cdot x $

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
InputItWstandard iterator type of firstW and lastW.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
firstWiterator pointing to the first item in the weight-dataset to use $ w_1 $
lastWiterator pointing behind the last item in the weight-dataset to use $ w_N $
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB
Parameters
fWeightDataToWian optional function, which is applied to the data from firstW ... lastW to convert them to weight, i.e. wi=fWeightDataToWi(*itW) e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values. In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight is directly proportional to the given value.

Example:

double coeffA=0, coeffB=0;
jkqtpstatLinearWeightedRegression(datastore1->begin(colWLinX), datastore1->end(colWLinX),
datastore1->begin(colWLinY), datastore1->end(colWLinY),
datastore1->begin(colWLinE), datastore1->end(colWLinE),
coeffA, coeffB, false, false,
&jkqtp_inversePropSaveDefault<double>);
void jkqtpstatLinearWeightedRegression(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double &coeffA, double &coeffB, bool fixA=false, bool fixB=false, std::function< double(double)> fWeightDataToWi=&jkqtp_identity< double >)
calculate the weighted linear regression coefficients for a given for a given data range firstX / fir...
Definition jkqtpstatregression.h:144
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatLinearRegression()

◆ jkqtpstatAddLinearWeightedRegression() [2/2]

JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraph * jkqtpstatAddLinearWeightedRegression ( JKQTPXYGraph datagraph,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false 
)

calculate the linear weighted regression coefficients for a given data data used to draw any JKQTPXYGraph datagraph , which also implements JKQTPYGraphErrorData and where the model is $ f(x)=a+b\cdot x $

Parameters
datagraphgraph representing the (x,y,error) data triples to which to fit the regression line The errors are used as iverse weights!
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB

Example:

plot1->addGraph(graphD=new JKQTPXYLineErrorGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
graphD->setYErrorColumn(static_cast<int>(colWLinE));
This implements xy line plots with x and y error indicators.
Definition jkqtplines.h:112
void setYErrorColumn(int __value)
the column that contains the error of the x-component of the datapoints
JKQTPXFunctionLineGraph * jkqtpstatAddLinearWeightedRegression(JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, std::function< double(double)> fWeightDataToWi=&jkqtp_identity< double >)
calculate the weighted linear regression coefficients for a given for a given data range firstX / fir...
Definition jkqtpstatisticsadaptors.h:1918
Note
The line graph is added to the same plotter that is the parent of datagraph !
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatLinearRegression()

◆ jkqtpstatAddPolyFit() [1/4]

template<class InputItX , class InputItY >
JKQTPXFunctionLineGraph * jkqtpstatAddPolyFit ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
size_t  P 
)
inline

fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given data range firstX / firstY ... lastX / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
Pdegree of the polynomial (P>=N !!!)

Example:

jkqtpstatAddPolyFit(plot1->getPlotter(), JKQTPStatRegressionModelType::Exponential, datastore1->begin(colLinX), datastore1->end(colLinX), datastore1->begin(colLinY), datastore1->end(colLinY), 3);
JKQTPXFunctionLineGraph * jkqtpstatAddPolyFit(JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t P, OutputItP firstRes)
fits (in a least-squares sense) a polynomial of order P to a set of N data pairs from a given data ...
Definition jkqtpstatisticsadaptors.h:2248
@ Exponential
exponential model
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatPolyFit()

◆ jkqtpstatAddPolyFit() [2/4]

template<class InputItX , class InputItY , class OutputItP >
JKQTPXFunctionLineGraph * jkqtpstatAddPolyFit ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
size_t  P,
OutputItP  firstRes 
)
inline

fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given data range firstX / firstY ... lastX / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
OutputItPoutput iterator for the polynomial coefficients
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
Pdegree of the polynomial (P>=N !!!)
[out]firstResIterator (of type OutputItP ), which receives the (P+1)-entry vector with the polynomial coefficients $ p_i $

Example:

std::vector<double> pFit;
jkqtpstatAddPolyFit(plot1->getPlotter(), JKQTPStatRegressionModelType::Exponential, datastore1->begin(colLinX), datastore1->end(colLinX), datastore1->begin(colLinY), datastore1->end(colLinY), 3, std::back_inserter(pFit));
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatPolyFit()

◆ jkqtpstatAddPolyFit() [3/4]

JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraph * jkqtpstatAddPolyFit ( JKQTPXYGraph datagraph,
size_t  P 
)

fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given JKQTPXYGraph datagraph

Parameters
datagraphgraph representing the (x,y) datapairs to which to fit the regression line
Pdegree of the polynomial (P>=N !!!)

Example:

plot1->addGraph(graphD=new JKQTPXYLineGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatPolyFit()

◆ jkqtpstatAddPolyFit() [4/4]

template<class OutputItP >
JKQTPXFunctionLineGraph * jkqtpstatAddPolyFit ( JKQTPXYGraph datagraph,
size_t  P,
OutputItP  firstRes 
)
inline

fits (in a least-squares sense) a polynomial $ f(x)=\sum\limits_{i=0}^Pp_ix^i $ of order P to a set of N data pairs $ (x_i,y_i) $ from a given JKQTPXYGraph datagraph

Template Parameters
OutputItPoutput iterator for the polynomial coefficients
Parameters
datagraphgraph representing the (x,y) datapairs to which to fit the regression line
Pdegree of the polynomial (P>=N !!!)
[out]firstResIterator (of type OutputItP ), which receives the (P+1)-entry vector with the polynomial coefficients $ p_i $

Example:

plot1->addGraph(graphD=new JKQTPXYLineGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
std::vector<double> pFit;
jkqtpstatAddPolyFit(graphD, 3,std::back_inserter(pFit));
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatPolyFit()

◆ jkqtpstatAddRegression()

template<class InputItX , class InputItY >
JKQTPXFunctionLineGraph * jkqtpstatAddRegression ( JKQTBasePlotter plotter,
JKQTPStatRegressionModelType  type,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false 
)
inline

calculate the linear regression coefficients for a given data range firstX / firstY ... lastX / lastY where the model is defined by type

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
typemodel to be fitted
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB

Example:

jkqtpstatRegression(plot1->getPlotter(), JKQTPStatRegressionModelType::Exponential, datastore1->begin(colLinX), datastore1->end(colLinX), datastore1->begin(colLinY), datastore1->end(colLinY));
void jkqtpstatRegression(JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double &coeffA, double &coeffB, bool fixA=false, bool fixB=false)
calculate the linear regression coefficients for a given data range firstX / firstY ....
Definition jkqtpstatregression.h:338
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatRegression()

◆ jkqtpstatAddRobustIRLSLinearRegression() [1/2]

template<class InputItX , class InputItY >
JKQTPXFunctionLineGraph * jkqtpstatAddRobustIRLSLinearRegression ( JKQTBasePlotter plotter,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false,
double  p = 1.1,
int  iterations = 100 
)
inline

calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters of the model $ f(x)=a+b\cdot x $ for a given data range firstX / firstY ... lastX / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB
Parameters
pregularization parameter, the optimization problem is formulated in the $ L_p $ norm, using this p (see image below for an example)
iterationsthe number of iterations the IRLS algorithm performs

Example:

jkqtpstatAddRobustIRLSLinearRegression(plot1->getPlotter(), datastore1->begin(colLinX), datastore1->end(colLinX), datastore1->begin(colLinY), datastore1->end(colLinY));
JKQTPXFunctionLineGraph * jkqtpstatAddRobustIRLSLinearRegression(JKQTBasePlotter *plotter, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100)
calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters of the...
Definition jkqtpstatisticsadaptors.h:1830
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatRobustIRLSLinearRegression()

◆ jkqtpstatAddRobustIRLSLinearRegression() [2/2]

JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraph * jkqtpstatAddRobustIRLSLinearRegression ( JKQTPXYGraph datagraph,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false,
double  p = 1.1,
int  iterations = 100 
)

calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters of the model $ f(x)=a+b\cdot x $ for a given data range firstX / firstY ... lastX / lastY

Parameters
datagraphgraph representing the (x,y) datapairs to which to fit the regression line
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB
Parameters
pregularization parameter, the optimization problem is formulated in the $ L_p $ norm, using this p (see image below for an example)
iterationsthe number of iterations the IRLS algorithm performs

Example:

plot1->addGraph(graphD=new JKQTPXYLineGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
Note
The line graph is added to the same plotter that is the parent of datagraph !
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatRobustIRLSLinearRegression()

◆ jkqtpstatAddRobustIRLSRegression() [1/2]

template<class InputItX , class InputItY >
JKQTPXFunctionLineGraph * jkqtpstatAddRobustIRLSRegression ( JKQTBasePlotter plotter,
JKQTPStatRegressionModelType  type,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false,
double  p = 1.1,
int  iterations = 100 
)
inline

calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters where the model is defined by type for a given data range firstX / firstY ... lastX / lastY

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
Parameters
plotterthe plotter to which to add the resulting graph
typemodel to be fitted
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB
Parameters
pregularization parameter, the optimization problem is formulated in the $ L_p $ norm, using this p (see image below for an example)
iterationsthe number of iterations the IRLS algorithm performs

Example:

jkqtpstatAddRobustIRLSRegression(plot1->getPlotter(), JKQTPStatRegressionModelType::Exponential, datastore1->begin(colLinX), datastore1->end(colLinX), datastore1->begin(colLinY), datastore1->end(colLinY));
JKQTPXFunctionLineGraph * jkqtpstatAddRobustIRLSRegression(JKQTBasePlotter *plotter, JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100)
calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters where ...
Definition jkqtpstatisticsadaptors.h:2080
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatRobustIRLSRegression()

◆ jkqtpstatAddRobustIRLSRegression() [2/2]

JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraph * jkqtpstatAddRobustIRLSRegression ( JKQTPXYGraph datagraph,
JKQTPStatRegressionModelType  type,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false,
double  p = 1.1,
int  iterations = 100 
)

calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters where the model is defined by type for a given data range firstX / firstY ... lastX / lastY

Parameters
datagraphgraph representing the (x,y) datapairs to which to fit the regression line
typemodel to be fitted
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB
Parameters
pregularization parameter, the optimization problem is formulated in the $ L_p $ norm, using this p (see image below for an example)
iterationsthe number of iterations the IRLS algorithm performs

Example:

plot1->addGraph(graphD=new JKQTPXYLineGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
Note
The line graph is added to the same plotter that is the parent of datagraph !
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatRobustIRLSRegression()

◆ jkqtpstatAddVBoxplot()

template<class InputIt >
JKQTPBoxplotVerticalElement * jkqtpstatAddVBoxplot ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  boxposX,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0,
double  maximumQuantile = 1.0,
JKQTPStat5NumberStatistics statOutput = nullptr 
)
inline

add a JKQTPBoxplotVerticalElement to the given plotter, where the boxplot values are calculated from the data range first ... last

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
boxposXx-coordinate of the boxplot
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
[out]statOutputoptionally returns the internally calculated statistics as a JKQTPStat5NumberStatistics
Returns
a boxplot element with its values initialized from the given data range

Example:

jkqtpstatAddVBoxplot(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3);
JKQTPBoxplotVerticalElement * jkqtpstatAddVBoxplot(JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposX, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0, JKQTPStat5NumberStatistics *statOutput=nullptr)
add a JKQTPBoxplotVerticalElement to the given plotter, where the boxplot values are calculated from ...
Definition jkqtpstatisticsadaptors.h:112
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstat5NumberStatistics()

◆ jkqtpstatAddVBoxplotAndOutliers()

template<class InputIt >
std::pair< JKQTPBoxplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVBoxplotAndOutliers ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  boxposX,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
const QString &  outliercolumnBaseName = QString("boxplot"),
JKQTPStat5NumberStatistics statOutput = nullptr 
)
inline

add a JKQTPBoxplotVerticalElement and a JKQTPSingleColumnSymbolsGraph for outliers to the given plotter, where the boxplot values are calculated from the data range first ... last

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
boxposXx-coordinate of the outliers (and the boxplot)
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0.03, i.e. the 3% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 0.97, i.e. the 97% quantile!)
outliercolumnBaseNamethis string is used in building the column names for the outlier columns
[out]statOutputoptionally returns the internally calculated statistics as a JKQTPStat5NumberStatistics
Returns
a boxplot element with its values initialized from the given data range

Example:

jkqtpstatAddVBoxplotAndOutliers(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3);
jkqtpstatAddVBoxplotAndOutliers(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3,
0.25, 0.75, // 1. and 3. Quartile for the boxplot box
0.05, 0.95 // Quantiles for the boxplot box whiskers' ends
std::pair< JKQTPBoxplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVBoxplotAndOutliers(JKQTBasePlotter *plotter, InputIt first, InputIt last, double boxposX, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &outliercolumnBaseName=QString("boxplot"), JKQTPStat5NumberStatistics *statOutput=nullptr)
add a JKQTPBoxplotVerticalElement and a JKQTPSingleColumnSymbolsGraph for outliers to the given plott...
Definition jkqtpstatisticsadaptors.h:224
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstat5NumberStatistics()

◆ jkqtpstatAddVBoxplotsAndOutliers()

template<class InputCatIt , class InputValueIt >
std::pair< JKQTPBoxplotVerticalGraph *, JKQTPXYLineGraph * > jkqtpstatAddVBoxplotsAndOutliers ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped boxplot data") 
)
inline

create vertical boxplots of type JKQTPBoxplotVerticalGraph, from the 5-value-summary of groups in the input data, also adds a graph showing the outliers

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the boxplot graph (return.first) and the outliers graph (return.second)
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddVHistogram1D()

template<class InputIt , class BinsInputIt >
JKQTPBarHorizontalGraph * jkqtpstatAddVHistogram1D ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
BinsInputIt  binsFirst,
BinsInputIt  binsLast,
bool  normalized = true,
bool  cummulative = false,
const QString &  histogramcolumnBaseName = QString("histogram") 
)
inline

calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
BinsInputItstandard iterator type of binsFirst and binsLast.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binsFirstiterator pointing to the first item in the set of histogram bins
binsLastiterator pointing behind the last item in the set of histogram bins
histogramcolumnBaseNamethis string is used in building the column names for the histogram columns
normalizedindicates whether the histogram has to be normalized
cummulativeif true, a cummulative histogram is calculated
Returns
a graph class pointer (of type GraphClass ) displaying the histogram data

Example:

std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
jkqtpstatAddVHistogram1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
JKQTPBarHorizontalGraph * jkqtpstatAddVHistogram1D(JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:1015
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatHistogram1D(), JKQTPBarHorizontalGraph

◆ jkqtpstatAddVHistogram1DAutoranged() [1/2]

template<class InputIt >
JKQTPBarHorizontalGraph * jkqtpstatAddVHistogram1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  binWidth,
bool  normalized = true,
bool  cummulative = false,
const QString &  histogramcolumnBaseName = QString("histogram") 
)
inline

calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binWidthwidth of the bins
histogramcolumnBaseNamethis string is used in building the column names for the histogram columns
normalizedindicates whether the histogram has to be normalized
cummulativeif true, a cummulative histogram is calculated
Returns
a graph class pointer (of type GraphClass ) displaying the histogram data

Example:

jkqtpstatAddVHistogram1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 0.5);
JKQTPBarHorizontalGraph * jkqtpstatAddVHistogram1DAutoranged(JKQTBasePlotter *plotter, InputIt first, InputIt last, int bins=11, bool normalized=true, bool cummulative=false, const QString &histogramcolumnBaseName=QString("histogram"))
calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:941
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatHistogram1DAutoranged(), JKQTPBarHorizontalGraph

◆ jkqtpstatAddVHistogram1DAutoranged() [2/2]

template<class InputIt >
JKQTPBarHorizontalGraph * jkqtpstatAddVHistogram1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
int  bins = 11,
bool  normalized = true,
bool  cummulative = false,
const QString &  histogramcolumnBaseName = QString("histogram") 
)
inline

calculate an autoranged histogram and add a JKQTPBarHorizontalGraph to the given plotter, where the histogram is calculated from the data range first ... last, bins defined by their number

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binsnumber of bins in the resulting histogram
histogramcolumnBaseNamethis string is used in building the column names for the histogram columns
normalizedindicates whether the histogram has to be normalized
cummulativeif true, a cummulative histogram is calculated
Returns
a graph class pointer (of type GraphClass ) displaying the histogram data

Example:

jkqtpstatAddVHistogram1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 11);
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatHistogram1DAutoranged(), JKQTPBarHorizontalGraph

◆ jkqtpstatAddVKDE1D() [1/2]

template<class InputIt , class BinsInputIt >
JKQTPXYLineGraph * jkqtpstatAddVKDE1D ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
BinsInputIt  binsFirst,
BinsInputIt  binsLast,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
BinsInputItstandard iterator type of binsFirst and binsLast.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binsFirstiterator pointing to the first item in the set of KDE bins
binsLastiterator pointing behind the last item in the set of KDE bins
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
jkqtpstatAddVKDE1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
JKQTPXYLineGraph * jkqtpstatAddVKDE1D(JKQTBasePlotter *plotter, InputIt first, InputIt last, BinsInputIt binsFirst, BinsInputIt binsLast, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:1543
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1D(), JKQTPXYLineGraph

◆ jkqtpstatAddVKDE1D() [2/2]

template<class InputIt >
JKQTPXYLineGraph * jkqtpstatAddVKDE1D ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  binXLeft,
double  binXDelta,
double  binXRight,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, evaluation positions are given by the range binXLeft ... binXRight (in steps of binxDelta )

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binXLeftfirst x-position, where to evaluate the KDE
binXDeltadistance between two x-positions at which the KDE is evaluated
binXRightlast x-position, where to evaluate the KDE
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
jkqtpstatAddVKDE1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1D(), JKQTPXYLineGraph

◆ jkqtpstatAddVKDE1DAutoranged() [1/2]

template<class InputIt >
JKQTPXYLineGraph * jkqtpstatAddVKDE1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  binWidth,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their width

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
binWidthwidth of the bins
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

jkqtpstatAddVKDE1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 0.01);
JKQTPXYLineGraph * jkqtpstatAddVKDE1DAutoranged(JKQTBasePlotter *plotter, InputIt first, InputIt last, int Nout=100, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=1.0, bool cummulative=false, const QString &KDEcolumnBaseName=QString("KDE"))
calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter,...
Definition jkqtpstatisticsadaptors.h:1457
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1DAutoranged(), JKQTPXYLineGraph

◆ jkqtpstatAddVKDE1DAutoranged() [2/2]

template<class InputIt >
JKQTPXYLineGraph * jkqtpstatAddVKDE1DAutoranged ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
int  Nout = 100,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = 1.0,
bool  cummulative = false,
const QString &  KDEcolumnBaseName = QString("KDE") 
)
inline

calculate an autoranged vertical KDE and add a JKQTPXYLineGraph to the given plotter, where the KDE is calculated from the data range first ... last, bins defined by their number

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
Noutnumber of points in the resulting KDE
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE
cummulativeif true, a cummulative KDE is calculated
KDEcolumnBaseNamethis string is used in building the column names for the KDE data columns
Returns
a graph class pointer (of type GraphClass ) displaying the KDE data

Example:

jkqtpstatAddVKDE1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 200);
See also
Tutorial (JKQTPDatastore): Advanced 1-Dimensional Statistics with JKQTPDatastore, jkqtpstatKDE1DAutoranged(), JKQTPXYLineGraph

◆ jkqtpstatAddVViolinplotHistogram()

template<class InputIt >
JKQTPViolinplotVerticalElement * jkqtpstatAddVViolinplotHistogram ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 21 
)
inline

add a JKQTPViolinplotVerticalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
distBasenamename basing for added columns
violinDistSamplesnumber of bin of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddVViolinplotHistogram(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -10);
JKQTPViolinplotVerticalElement * jkqtpstatAddVViolinplotHistogram(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
add a JKQTPViolinplotVerticalElement to the given plotter, where the Violinplot values are calculated...
Definition jkqtpstatisticsadaptors.h:432
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotVerticalElement, jkqtpstatHistogram1DAutoranged()

◆ jkqtpstatAddVViolinplotHistogramAndOutliers()

template<class InputIt >
std::pair< JKQTPViolinplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVViolinplotHistogramAndOutliers ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 21 
)
inline

add a JKQTPViolinplotVerticalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a histogram as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
distBasenamename basing for added columns
violinDistSamplesnumber of samples of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddVViolinplotHistogramAndOutliers(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -5);
std::pair< JKQTPViolinplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVViolinplotHistogramAndOutliers(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=21)
add a JKQTPViolinplotVerticalElement and an outliers graph to the given plotter, where the Violinplot...
Definition jkqtpstatisticsadaptors.h:744
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotVerticalElement, jkqtpstatHistogram1DAutoranged()

◆ jkqtpstatAddVViolinplotKDE()

template<class InputIt >
JKQTPViolinplotVerticalElement * jkqtpstatAddVViolinplotKDE ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = -1,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 100 
)
inline

add a JKQTPViolinplotVerticalElement to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE, if <0 then jkqtpstatEstimateKDEBandwidth(first,last) is called
distBasenamename basing for added columns
violinDistSamplesnumber of samples of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddVViolinplotKDE(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -20);
JKQTPViolinplotVerticalElement * jkqtpstatAddVViolinplotKDE(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
add a JKQTPViolinplotVerticalElement to the given plotter, where the Violinplot values are calculated...
Definition jkqtpstatisticsadaptors.h:384
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotVerticalElement, jkqtpstatKDE1DAutoranged()

◆ jkqtpstatAddVViolinplotKDEAndOutliers()

template<class InputIt >
std::pair< JKQTPViolinplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVViolinplotKDEAndOutliers ( JKQTBasePlotter plotter,
InputIt  first,
InputIt  last,
double  violinposY,
const std::function< double(double)> &  kernel = std::function<double(double)>(&jkqtpstatKernel1DGaussian),
double  bandwidth = -1,
double  minimumQuantile = 0.03,
double  maximumQuantile = 0.97,
const QString &  distBasename = QString("violin plot distribution"),
int  violinDistSamples = 100 
)
inline

add a JKQTPViolinplotVerticalElement and an outliers graph to the given plotter, where the Violinplot values are calculated from the data range first ... last , uses a kernel density estimate as density distribution estimate

Template Parameters
InputItstandard iterator type of first and last.
Parameters
plotterthe plotter to which to add the resulting graph
firstiterator pointing to the first item in the dataset to use $ X_1 $
lastiterator pointing behind the last item in the dataset to use $ X_N $
violinposYy-coordinate of the Violinplot
kernelthe kernel function to use (e.g. jkqtpstatKernel1DGaussian() )
bandwidthbandwidth used for the KDE, if <0 then jkqtpstatEstimateKDEBandwidth(first,last) is called
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
distBasenamename basing for added columns
violinDistSamplesnumber of samples of the distribution (between min and max)
Returns
a Violinplot element with its values initialized from the given data range

Example:

jkqtpstatAddVViolinplotKDEAndOutliers(plot->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -15);
std::pair< JKQTPViolinplotVerticalElement *, JKQTPSingleColumnSymbolsGraph * > jkqtpstatAddVViolinplotKDEAndOutliers(JKQTBasePlotter *plotter, InputIt first, InputIt last, double violinposY, const std::function< double(double)> &kernel=std::function< double(double)>(&jkqtpstatKernel1DGaussian), double bandwidth=-1, double minimumQuantile=0.03, double maximumQuantile=0.97, const QString &distBasename=QString("violin plot distribution"), int violinDistSamples=100)
add a JKQTPViolinplotVerticalElement and an outliers graph to the given plotter, where the Violinplot...
Definition jkqtpstatisticsadaptors.h:661
See also
Example (JKQTPlotter): Violin Plots, JKQTPViolinplotVerticalElement, jkqtpstatKDE1DAutoranged()

◆ jkqtpstatAddWeightedRegression() [1/2]

template<class InputItX , class InputItY , class InputItW >
JKQTPXFunctionLineGraph * jkqtpstatAddWeightedRegression ( JKQTBasePlotter plotter,
JKQTPStatRegressionModelType  type,
InputItX  firstX,
InputItX  lastX,
InputItY  firstY,
InputItY  lastY,
InputItW  firstW,
InputItW  lastW,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false,
std::function< double(double)>  fWeightDataToWi = &jkqtp_identity<double> 
)
inline

calculate the weighted linear regression coefficients for a given for a given data range firstX / firstY / firstW ... lastX / lastY / lastW where the model is defined by type

Template Parameters
InputItXstandard iterator type of firstX and lastX.
InputItYstandard iterator type of firstY and lastY.
InputItWstandard iterator type of firstW and lastW.
Parameters
plotterthe plotter to which to add the resulting graph
typemodel to be fitted
firstXiterator pointing to the first item in the x-dataset to use $ x_1 $
lastXiterator pointing behind the last item in the x-dataset to use $ x_N $
firstYiterator pointing to the first item in the y-dataset to use $ y_1 $
lastYiterator pointing behind the last item in the y-dataset to use $ y_N $
firstWiterator pointing to the first item in the weight-dataset to use $ w_1 $
lastWiterator pointing behind the last item in the weight-dataset to use $ w_N $
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB
Parameters
fWeightDataToWian optional function, which is applied to the data from firstW ... lastW to convert them to weight, i.e. wi=fWeightDataToWi(*itW) e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values. In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight is directly proportional to the given value.

Example:

double coeffA=0, coeffB=0;
datastore1->begin(colWLinX), datastore1->end(colWLinX),
datastore1->begin(colWLinY), datastore1->end(colWLinY),
datastore1->begin(colWLinE), datastore1->end(colWLinE),
coeffA, coeffB, false, false,
&jkqtp_inversePropSaveDefault<double>);
JKQTPXFunctionLineGraph * jkqtpstatAddWeightedRegression(JKQTBasePlotter *plotter, JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double *coeffA=nullptr, double *coeffB=nullptr, bool fixA=false, bool fixB=false, std::function< double(double)> fWeightDataToWi=&jkqtp_identity< double >)
calculate the weighted linear regression coefficients for a given for a given data range firstX / fir...
Definition jkqtpstatisticsadaptors.h:2170
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatWeightedRegression()

◆ jkqtpstatAddWeightedRegression() [2/2]

JKQTPLOTTER_LIB_EXPORT JKQTPXFunctionLineGraph * jkqtpstatAddWeightedRegression ( JKQTPXYGraph datagraph,
JKQTPStatRegressionModelType  type,
double *  coeffA = nullptr,
double *  coeffB = nullptr,
bool  fixA = false,
bool  fixB = false 
)

calculate the linear weighted regression coefficients for a given data data used to draw any JKQTPXYGraph datagraph , which also implements JKQTPYGraphErrorData and where the model is defined by type

Parameters
datagraphgraph representing the (x,y,error) data triples to which to fit the regression line The errors are used as iverse weights!
typemodel to be fitted
[in,out]coeffAreturns the offset of the linear model
[in,out]coeffBreturns the slope of the linear model
fixAif true, the offset coefficient $ a $ is not determined by the fit, but the value provided in coeffA is used
Note
If fixA ==true, You need to provide a value for A in coeffA
Parameters
fixBif true, the slope coefficient $ b $ is not determined by the fit, but the value provided in coeffB is used
Note
If fixB ==true, You need to provide a value for B in coeffB

Example:

plot1->addGraph(graphD=new JKQTPXYLineErrorGraph(plot1));
graphD->setXYColumns(colLinX, colLinY);
graphD->setYErrorColumn(static_cast<int>(colWLinE));
Note
The line graph is added to the same plotter that is the parent of datagraph !
See also
Tutorial (JKQTPDatastore): Regression Analysis (with the Statistics Library), jkqtpstatWeightedRegression()

◆ jkqtpstatAddXErrorBarGraph()

template<class InputCatIt , class InputValueIt >
JKQTPBarHorizontalErrorGraph * jkqtpstatAddXErrorBarGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPBarHorizontalErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXErrorGraph(), JKQTPBarHorizontalErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXErrorFilledCurveGraph()

template<class InputCatIt , class InputValueIt >
JKQTPFilledCurveXErrorGraph * jkqtpstatAddXErrorFilledCurveGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPFilledCurveXErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXErrorGraph(), JKQTPFilledCurveXErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXErrorGraph()

template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddXErrorGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a plot with x-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
TGraphtype of graph that should be added to the plot
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXErrorImpulsesGraph()

template<class InputCatIt , class InputValueIt >
JKQTPImpulsesHorizontalErrorGraph * jkqtpstatAddXErrorImpulsesGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPImpulsesHorizontalErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXErrorGraph(), JKQTPImpulsesHorizontalErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXErrorLineGraph()

template<class InputCatIt , class InputValueIt >
JKQTPXYLineErrorGraph * jkqtpstatAddXErrorLineGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPXYLineErrorGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXErrorGraph(), JKQTPXYLineErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXErrorParametrizedScatterGraph()

template<class InputCatIt , class InputValueIt >
JKQTPXYParametrizedErrorScatterGraph * jkqtpstatAddXErrorParametrizedScatterGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPXYParametrizedErrorScatterGraph with x-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXErrorGraph(), JKQTPXYParametrizedErrorScatterGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXYErrorGraph()

template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddXYErrorGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a plot with x- and y-direction error bars, calculated from directional average +/- stddev of groups in the input data

Template Parameters
TGraphtype of graph that should be added to the plot
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXYErrorLineGraph()

template<class InputCatIt , class InputValueIt >
JKQTPXYLineErrorGraph * jkqtpstatAddXYErrorLineGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPXYLineErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXYErrorGraph(), JKQTPXYLineErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddXYErrorParametrizedScatterGraph()

template<class InputCatIt , class InputValueIt >
JKQTPXYParametrizedErrorScatterGraph * jkqtpstatAddXYErrorParametrizedScatterGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPXYParametrizedErrorScatterGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddXYErrorGraph(), JKQTPXYParametrizedErrorScatterGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddYErrorBarGraph()

template<class InputCatIt , class InputValueIt >
JKQTPBarVerticalErrorGraph * jkqtpstatAddYErrorBarGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPBarVerticalErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddYErrorGraph(), JKQTPBarVerticalErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddYErrorFilledCurveGraph()

template<class InputCatIt , class InputValueIt >
JKQTPFilledCurveYErrorGraph * jkqtpstatAddYErrorFilledCurveGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPFilledCurveYErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddYErrorGraph(), JKQTPFilledCurveYErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddYErrorGraph()

template<class InputCatIt , class InputValueIt , class TGraph >
TGraph * jkqtpstatAddYErrorGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a plot with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
TGraphtype of graph that should be added to the plot
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddYErrorImpulsesGraph()

template<class InputCatIt , class InputValueIt >
JKQTPImpulsesVerticalErrorGraph * jkqtpstatAddYErrorImpulsesGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPImpulsesVerticalErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddYErrorGraph(), JKQTPImpulsesVerticalErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddYErrorLineGraph()

template<class InputCatIt , class InputValueIt >
JKQTPXYLineErrorGraph * jkqtpstatAddYErrorLineGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPXYLineErrorGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddYErrorGraph(), JKQTPXYLineErrorGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatAddYErrorParametrizedScatterGraph()

template<class InputCatIt , class InputValueIt >
JKQTPXYParametrizedErrorScatterGraph * jkqtpstatAddYErrorParametrizedScatterGraph ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_X,
InputCatIt  inLastCat_X,
InputValueIt  inFirstValue_Y,
InputValueIt  inLastValue_Y,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped data") 
)
inline

create a JKQTPXYParametrizedErrorScatterGraph with y-direction error bars, calculated from average +/- stddev of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_X and inLastCat_X
InputValueItstandard iterator type of inFirstValue_Y and inLastValue_Y
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Xiterator pointing to the first item in the category dataset to use $ c_1 $ (used for x-coordinates)
inLastCat_Xiterator pointing behind the last item in the category dataset to use $ c_N $ (used for x-coordinates)
inFirstValue_Yiterator pointing to the first item in the category dataset to use $ v_1 $ (used for y-coordinates)
inLastValue_Yiterator pointing behind the last item in the category dataset to use $ v_N $ (used for y-coordinates)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the graph showing $ c_{\text{out},j} $ and average +/- stddev for each group $ j $
See also
jkqtpstatGroupData(), jkqtpstatAddYErrorGraph(), JKQTPXYParametrizedErrorScatterGraph, Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore

◆ jkqtpstatVAddBoxplots()

template<class InputCatIt , class InputValueIt >
JKQTPBoxplotVerticalGraph * jkqtpstatVAddBoxplots ( JKQTBasePlotter plotter,
InputCatIt  inFirstCat_Y,
InputCatIt  inLastCat_Y,
InputValueIt  inFirstValue_X,
InputValueIt  inLastValue_X,
double  quantile1Spec = 0.25,
double  quantile2Spec = 0.75,
double  minimumQuantile = 0,
double  maximumQuantile = 1.0,
JKQTPStatGroupDefinitionFunctor1D  groupDefFunc = &jkqtpstatGroupingIdentity1D,
const QString &  columnBaseName = QString("grouped boxplot data") 
)
inline

create vertical boxplots of type JKQTPBoxplotVerticalGraph, from the 5-value-summary of groups in the input data

Template Parameters
InputCatItstandard iterator type of inFirstCat_Y and inLastCat_Y
InputValueItstandard iterator type of inFirstValue_X and inLastValue_X
Parameters
plotterthe plotter to which to add the resulting graph
inFirstCat_Yiterator pointing to the first item in the category dataset to use $ c_1 $ (used for y-coordinates)
inLastCat_Yiterator pointing behind the last item in the category dataset to use $ c_N $ (used for y-coordinates)
inFirstValue_Xiterator pointing to the first item in the category dataset to use $ v_1 $ (used for x-coordinates)
inLastValue_Xiterator pointing behind the last item in the category dataset to use $ v_N $ (used for x-coordinates)
quantile1Specspecifies which quantile to calculate for qantile1 (range: 0..1)
quantile2Specspecifies which quantile to calculate for qantile2 (range: 0..1)
minimumQuantilespecifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!)
maximumQuantilespecifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!)
groupDefFuncassigns a group $ c_{\text{out},j} $ to each category value $ c_i $ .
columnBaseNamestring component used to build the names of the columns generated by this function
Returns
the boxplot graph
See also
jkqtpstatGroupData(), Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore