![]() |
JKQTPlotter trunk/v5.0.0
an extensive Qt5+Qt6 Plotter framework (including a feature-richt plotter widget, a speed-optimized, but limited variant and a LaTeX equation renderer!), written fully in C/C++ and without external dependencies
|
Classes | |
| struct | JKQTPStat5NumberStatistics |
| represents the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) More... | |
Functions | |
| template<class InputIt> | |
| void | jkqtpstat5NumberStatistics (InputIt first, InputIt last, double *minimum, double minimumQuantile=0, double *median=nullptr, double *maximum=nullptr, double maximumQuantile=1, double quantile1Spec=0.25, double *quantile1=nullptr, double quantile2Spec=0.75, double *quantile2=nullptr, double *IQR=nullptr, double *IQRSignificance=nullptr, size_t *Noutput=nullptr) |
| calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range first ... last (5-value statistics, e.g. used for boxplots) | |
| template<class InputIt> | |
| JKQTPStat5NumberStatistics | jkqtpstat5NumberStatistics (InputIt first, InputIt last, double quantile1Spec=0.25, double quantile2Spec=0.75, double minimumQuantile=0, double maximumQuantile=1.0) |
| calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range first ... last (5-value statistics, e.g. used for boxplots) | |
| template<class InputIt, class OutputIt> | |
| void | jkqtpstat5NumberStatisticsAndOutliers (InputIt first, InputIt last, OutputIt outliersout, double *minimum=nullptr, double minimumQuantile=0, double *median=nullptr, double *maximum=nullptr, double maximumQuantile=1, double *quantile1=nullptr, double quantile1Spec=0.25, double *quantile2=nullptr, double quantile2Spec=0.75, double *IQR=nullptr, double *IQRSignificance=nullptr, size_t *Noutput=nullptr) |
| calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range first ... last (5-value statistics, e.g. used for boxplots) | |
| template<class TVector, class OutputIt> | |
| void | jkqtpstat5NumberStatisticsAndOutliersOfSortedVector (const TVector &data, OutputIt outliersout, double *minimum=nullptr, double minimumQuantile=0, double *median=nullptr, double *maximum=nullptr, double maximumQuantile=1, double *quantile1=nullptr, double quantile1Spec=0.25, double *quantile2=nullptr, double quantile2Spec=0.75, double *IQR=nullptr, double *IQRSignificance=nullptr, size_t *Noutput=nullptr) |
| calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector | |
| template<class TVector> | |
| void | jkqtpstat5NumberStatisticsOfSortedVector (const TVector &data, double *minimum=nullptr, double minimumQuantile=0, double *median=nullptr, double *maximum=nullptr, double maximumQuantile=1, double *quantile1=nullptr, double quantile1Spec=0.25, double *quantile2=nullptr, double quantile2Spec=0.75, double *IQR=nullptr, double *IQRSignificance=nullptr, size_t *Noutput=nullptr) |
| calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector | |
| template<class InputIt> | |
| double | jkqtpstatAverage (InputIt first, InputIt last, size_t *Noutput=nullptr) |
| calculates the average of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatCentralMoment (InputIt first, InputIt last, int order, double *averageOut=nullptr, size_t *Noutput=nullptr) |
| calculates the given central moment | |
| template<class InputIt1, class InputIt2> | |
| double | jkqtpstatCorrelationCoefficient (InputIt1 first1, InputIt1 last1, InputIt2 first2, double *averageOut1=nullptr, double *averageOut2=nullptr, size_t *Noutput=nullptr) |
| calculate empirical (Pearson's) correlation coefficient | |
| template<class InputIt> | |
| size_t | jkqtpstatCount (InputIt first, InputIt last) |
| calculates the number of valid values in the given data range first ... last | |
| template<class InputIt, class OutputIt> | |
| void | jkqtpstatCumSum (InputIt first, InputIt last, OutputIt output) |
| calculates the vector of cummulative (or partial) sums of a given data range first ... last | |
| template<class InputIt, class OutputIt> | |
| size_t | jkqtpstatFilterGoodFloat (InputIt first, InputIt last, OutputIt output) |
| filters the given data range first ... last for good floats (using JKQTPIsOKFloat() ) | |
| template<class InputIt> | |
| double | jkqtpstatMAD (InputIt first, InputIt last, double *median=nullptr, size_t *Noutput=nullptr) |
| calculates the median absolute deviation about the median (MAD) of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatMaximum (InputIt first, InputIt last, InputIt *maxPos=nullptr, size_t *Noutput=nullptr) |
| calculates the maximum value in the given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatMedian (InputIt first, InputIt last, size_t *Noutput=nullptr) |
| calculates the median of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatMedianAndPartialSort (InputIt first, InputIt last) |
| calculates the median of a given data range first ... last, this version partially sorts the range (i.e. no internal copy and checking for NAN-values is performed!) | |
| template<class TVector> | |
| double | jkqtpstatMedianOfSortedVector (const TVector &data, size_t *Noutput=nullptr) |
| calculates the median of a given sorted (!) data vector | |
| template<class InputIt> | |
| double | jkqtpstatMinimum (InputIt first, InputIt last, InputIt *minPos=nullptr, size_t *Noutput=nullptr) |
| calculates the minimum value in the given data range first ... last | |
| template<class InputIt> | |
| void | jkqtpstatMinMax (InputIt first, InputIt last, double &min, double &max, InputIt *minPos=nullptr, InputIt *maxPos=nullptr, size_t *Noutput=nullptr) |
| calculates the minimum and maximum values in the given data range first ... last | |
| template<class InputIt, class FF> | |
| double | jkqtpstatModifiedSum (InputIt first, InputIt last, FF modifierFunctor, size_t *Noutput=nullptr) |
| calculates the sum of a given data range first ... last of values, modifying each value with a given functor modifierFunctor before accumulating | |
| template<class InputIt> | |
| double | jkqtpstatMoment (InputIt first, InputIt last, int order, size_t *Noutput=nullptr) |
| calculates the given (non-central) moment | |
| template<class InputIt> | |
| double | jkqtpstatNMAD (InputIt first, InputIt last, double *median=nullptr, size_t *Noutput=nullptr) |
| calculates the normalized median absolute deviation about the median (NMAD) of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatQuantile (InputIt first, InputIt last, double quantile, size_t *Noutput=nullptr) |
| calculates the quantile -th quantile of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatSkewness (InputIt first, InputIt last, double *averageOut=nullptr, size_t *Noutput=nullptr) |
| calculates the skewness | |
| template<class InputIt> | |
| double | jkqtpstatStdDev (InputIt first, InputIt last, double *averageOut=nullptr, size_t *Noutput=nullptr) |
| calculates the standard deviation | |
| template<class InputIt> | |
| double | jkqtpstatSum (InputIt first, InputIt last, size_t *Noutput=nullptr) |
| calculates the sum of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatSumSqr (InputIt first, InputIt last, size_t *Noutput=nullptr) |
| calculates the sum of squares of a given data range first ... last | |
| template<class InputIt> | |
| double | jkqtpstatVariance (InputIt first, InputIt last, double *averageOut=nullptr, size_t *Noutput=nullptr) |
| calculates the variance | |
| template<class InputIt, class InputWeightIt> | |
| double | jkqtpstatWeightedAverage (InputIt first, InputIt last, InputWeightIt firstWeight, size_t *Noutput=nullptr) |
| calculates the weighted average of a given data range first ... last | |
| template<class InputIt, class InputWeightIt> | |
| double | jkqtpstatWeightedStdDev (InputIt first, InputIt last, InputWeightIt firstWeight, double *averageOut=nullptr, size_t *Noutput=nullptr) |
| calculates the weighted standard deviation | |
| template<class InputIt, class InputWeightIt> | |
| double | jkqtpstatWeightedVariance (InputIt first, InputIt last, InputWeightIt firstWeight, double *averageOut=nullptr, size_t *Noutput=nullptr) |
| calculates the weighted variance | |
|
inline |
calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range first ... last (5-value statistics, e.g. used for boxplots)
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | minimum | optionally returns the minimum value of the array |
| minimumQuantile | specifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile! | |
| [out] | median | optionally returns the median value of the array |
| [out] | maximum | optionally returns the maximum value of the array |
| maximumQuantile | specifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile! | |
| quantile1Spec | specifies which quantile to calculate for qantile1 (range: 0..1) | |
| [out] | quantile1 | optionally returns the first quantile of the array (specified by quantile1Spec ) |
| quantile2Spec | specifies which quantile to calculate for qantile2 (range: 0..1) | |
| [out] | quantile2 | optionally returns the second quantile of the array (specified by quantile2Spec ) |
| [out] | IQR | interquartile range, i.e. the range between quantile1 and quantile2 |
| [out] | IQRSignificance | significance range of the interquartile range, calculated as
|
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range first ... last (5-value statistics, e.g. used for boxplots)
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use |
| last | iterator pointing behind the last item in the dataset to use |
| quantile1Spec | specifies which quantile to calculate for qantile1 (range: 0..1) |
| quantile2Spec | specifies which quantile to calculate for qantile2 (range: 0..1) |
| minimumQuantile | specifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!) |
| maximumQuantile | specifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!) |
|
inline |
calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range first ... last (5-value statistics, e.g. used for boxplots)
| InputIt | standard iterator type of first and last. |
| OutputIt | standard output iterator type used for the outliers output outliersout, use e.g. std::back_inserter |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| outliersout | output iterator that receives the outliers, smaller than minimum and larger than maximum | |
| [out] | minimum | optionally returns the minimum value of the array |
| minimumQuantile | specifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!) | |
| [out] | median | optionally returns the median value of the array |
| [out] | maximum | optionally returns the maximum value of the array |
| maximumQuantile | specifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!) | |
| quantile1Spec | specifies which quantile to calculate for qantile1 (range: 0..1) | |
| [out] | quantile1 | optionally returns the first quantile of the array (specified by quantile1Spec ) |
| quantile2Spec | specifies which quantile to calculate for qantile2 (range: 0..1) | |
| [out] | quantile2 | optionally returns the second quantile of the array (specified by quantile2Spec ) |
| [out] | IQR | interquartile range, i.e. the range between quantile1 and quantile2 |
| [out] | IQRSignificance | significance range of the interquartile range, calculated as
|
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector
| TVector | a type, compatible with std::vector (i,e, providing size(), []-element access and iterators) |
| data | a sorted vector with values | |
| outliersout | output iterator that receives the outliers, smaller than minimum and larger than maximum | |
| [out] | minimum | optionally returns the minimum value of the array |
| minimumQuantile | specifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!) | |
| [out] | median | optionally returns the median value of the array |
| [out] | maximum | optionally returns the maximum value of the array |
| maximumQuantile | specifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!) | |
| quantile1Spec | specifies which quantile to calculate for qantile1 (range: 0..1) | |
| [out] | quantile1 | optionally returns the first quantile of the array (specified by quantile1Spec ) |
| quantile2Spec | specifies which quantile to calculate for qantile2 (range: 0..1) | |
| [out] | quantile2 | optionally returns the second quantile of the array (specified by quantile2Spec ) |
| [out] | IQR | interquartile range, i.e. the range between quantile1 and quantile2 |
| [out] | IQRSignificance | significance range of the interquartile range, calculated as
|
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector
| TVector | a type, compatible with std::vector (i,e, providing size(), []-element access and iterators) |
| data | a sorted vector with values | |
| [out] | minimum | optionally returns the minimum value of the array |
| minimumQuantile | specifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile! | |
| [out] | median | optionally returns the median value of the array |
| [out] | maximum | optionally returns the maximum value of the array |
| maximumQuantile | specifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile! | |
| quantile1Spec | specifies which quantile to calculate for qantile1 (range: 0..1) | |
| [out] | quantile1 | optionally returns the first quantile of the array (specified by quantile1Spec ) |
| quantile2Spec | specifies which quantile to calculate for qantile2 (range: 0..1) | |
| [out] | quantile2 | optionally returns the second quantile of the array (specified by quantile2Spec ) |
| [out] | IQR | interquartile range, i.e. the range between quantile1 and quantile2 |
| [out] | IQRSignificance | significance range of the interquartile range, calculated as
|
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the average of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \overline{X}=\frac{1}{N}\cdot\sum\limits_{i=1}^{N}X_i \]](form_54.png)
|
inline |
calculates the given central moment 
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| order | oder | |
| [out] | averageOut | returns (optionally) the average of the dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |

This function implements:
![\[ \langle (X-\mu)^o\rangle= \mathbb{E}\left[\left(X-\mu\right)^o\right] \]](form_96.png)
where 



|
inline |
calculate empirical (Pearson's) correlation coefficient 
| InputIt1 | standard iterator type of first1 and last1. |
| InputIt2 | standard iterator type of first2 and last2. |
| first1 | iterator pointing to the first item in the first dataset to use | |
| last1 | iterator pointing behind the last item in the first dataset to use | |
| first2 | iterator pointing to the second item in the first dataset to use | |
| [out] | averageOut1 | returns (optionally) the average of the first dataset |
| [out] | averageOut2 | returns (optionally) the average of the second dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \rho_{x,y}=\text{CorCoeff}_{\text{Pearson}}(x,y)=\frac{\sum\limits_{i=0}^{N-1}(x_i-\overline{x})(y_i-\overline{y})}{\sqrt{\sum\limits_{i=0}^{N-1}(x_i-\overline{x})^2\cdot\sum\limits_{i=0}^{N-1}(y_i-\overline{y})^2}} \]](form_103.png)
|
inline |
calculates the number of valid values in the given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use |
| last | iterator pointing behind the last item in the dataset to use |
|
inline |
calculates the vector of cummulative (or partial) sums of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| OutputIt | standard output iterator type |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | output | This iterator is used to store the results, use e.g. a std::back_inserter Output is then a vector of cummulative (or partial) sums returned between first and last (excluding invalid doubles). For invalid values, the last sum is re-inserted, so the returned vector has the same number of entries as the range first ... last |
This function implements:
![\[ \sum(X)_j=\cdot\sum\limits_{i=1}^{j}X_i \]](form_60.png)
|
inline |
filters the given data range first ... last for good floats (using JKQTPIsOKFloat() )
| InputIt | standard iterator type of first and last. |
| OutputIt | standard output iterator type |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | output | This iterator is used to store the results, use e.g. a std::back_inserter |
|
inline |
calculates the median absolute deviation about the median (MAD) of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | median | optionally returns the median value in this variable |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function calculates
![\[ \mbox{MAD}(\vec{x})=\mbox{Med}\left\{|\vec{x}-\mbox{Med}(\vec{x})|\right\} \]](form_106.png)
|
inline |
calculates the maximum value in the given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | maxPos | receives the location of the maximum element value |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the median of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the median of a given data range first ... last, this version partially sorts the range (i.e. no internal copy and checking for NAN-values is performed!)
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use |
| last | iterator pointing behind the last item in the dataset to use |
|
inline |
calculates the median of a given sorted (!) data vector
| TVector | a type, compatible with std::vector (i,e, providing size(), []-element access and iterators) |
| data | a sorted vector with values | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the minimum value in the given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | minPos | receives the location of the minimum element value |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the minimum and maximum values in the given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | min | receives the minimum element value |
| [out] | max | receives the maximum element value |
| [out] | minPos | receives the location of the minimum element value |
| [out] | maxPos | receives the location of the minimum maximum element value |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the sum of a given data range first ... last of values, modifying each value with a given functor modifierFunctor before accumulating
| InputIt | standard iterator type of first and last. |
| FF | a functor type |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| modifierFunctor | the function to apply to each element in the range before summation (of type FF ) | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sum(X)=\cdot\sum\limits_{i=1}^{N}\mbox{modifierFunctor}(X_i) \]](form_57.png)
This function allows to e.g. calculate the sum of squares by calling
|
inline |
calculates the given (non-central) moment 
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| order | oder | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |

This function implements:
![\[ \langle X^n\rangle= \mathbb{E}\left[X^n\right] \]](form_98.png)
where 



|
inline |
calculates the normalized median absolute deviation about the median (NMAD) of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | median | optionally returns the median value in this variable |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function calculates
![\[ \mbox{NMAD}(\vec{x})=\frac{\mbox{MAD}(\vec{x})}{0.6745}=\frac{\mbox{Med}\left\{|\vec{x}-\mbox{Med}(\vec{x})|\right\}}{0.6745} \]](form_107.png)
|
inline |
calculates the quantile -th quantile of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| quantile | the given quantile, range 0..1 (e.g. 0.25 for the 25% quartile ...) | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
|
inline |
calculates the skewness ![$ \gamma_1=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] $](form_86.png)
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | averageOut | returns (optionally) the average of the dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |

This function implements:
![\[ \gamma_1=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]= \frac{m_3}{m_2^{3/2}} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^3}{\left(\frac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2\right)^{3/2}} \]](form_88.png)
where 




|
inline |
calculates the standard deviation 
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | averageOut | returns (optionally) the average of the dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sigma_X=\sqrt{\frac{1}{N-1}\cdot\sum\limits_{i=1}^{N}(X_i-\overline{X})^2}= \]](form_79.png)
|
inline |
calculates the sum of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sum(X)=\cdot\sum\limits_{i=1}^{N}X_i \]](form_58.png)
|
inline |
calculates the sum of squares of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sum(X)=\cdot\sum\limits_{i=1}^{N}X_i^2 \]](form_59.png)
|
inline |
calculates the variance 
| InputIt | standard iterator type of first and last. |
| InputWeightIt | standard iterator type of firstWeight |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| [out] | averageOut | returns (optionally) the average of the dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sigma_X^2=\text{Var}(X)=\frac{1}{N-1}\cdot\sum\limits_{i=1}^{N}(X_i-\overline{X})^2=\frac{1}{N-1}\cdot\left(\sum_{i=1}^NX_i^2-\frac{1}{N}\cdot\left(\sum_{i=1}^NX_i\right)^2\right) \]](form_71.png)
|
inline |
calculates the weighted average of a given data range first ... last
| InputIt | standard iterator type of first and last. |
| InputWeightIt | standard iterator type of firstWeight |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| firstWeight | iterator pointing to the first item in the weights dataset | |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \overline{X}=\frac{\sum\limits_{i=1}^{N}w_i\cdot X_i}{\sum\limits_{i=1}^{N}w_i} \]](form_56.png)
|
inline |
calculates the weighted standard deviation 
| InputIt | standard iterator type of first and last. |
| InputWeightIt | standard iterator type of firstWeight |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| firstWeight | iterator pointing to the first item in the weights dataset | |
| [out] | averageOut | returns (optionally) the average of the dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sigma_v=\sqrt{\frac{\sum\limits_{i=1}^{N}w_i\cdot (v_i-\overline{v})^2}{\sum\limits_{i=1}^{N}w_i}} \]](form_85.png)
|
inline |
calculates the weighted variance 
| InputIt | standard iterator type of first and last. |
| InputWeightIt | standard iterator type of firstWeight |
| first | iterator pointing to the first item in the dataset to use | |
| last | iterator pointing behind the last item in the dataset to use | |
| firstWeight | iterator pointing to the first item in the weights dataset | |
| [out] | averageOut | returns (optionally) the average of the dataset |
| [out] | Noutput | optionally returns the number of accumulated valid values in this variable |
This function implements:
![\[ \sigma_v^2=\text{Var}(v)=\frac{\sum\limits_{i=1}^{N}w_i\cdot (v_i-\overline{v})^2}{\sum\limits_{i=1}^{N}w_i} \]](form_84.png)